Prof. Dr. Alfred Toth

Positive und negative Copossessivitätsbereiche

1. Wir definieren zwei Mengen von Peirce-Zahlen (vgl. Bense 1975, S. 37; 1981, S. 17 ff.):

P2C-1

$$P := (x.)$$
 $C := (.x)$ $(x \in (1, 2, 3)).$

Dann haben wir

$$(1.1) = P^1C^0$$

$$(1.2) = P^1C^{+1}$$
 $(2.1) =$

$$(1.3) = P^1C^{+2}$$
 $(3.1) = P^3C^{-2}$

$$(2.2) = P^2C^0$$

$$(2.3) = P^2C^{+1}$$
 $(3.2) = P^3C^{-1}$

$$(3.3) = P^3C^0$$

Wie man erkennt, liegt 0-Copossessivität genau bei den identitiven Morphismen vor:

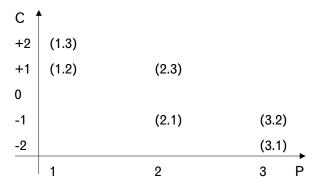
$$(1.1) = P^{1}C^{0}$$
 $(2.2) = P^{2}C^{0}$ $(3.3) = P^{3}C^{0}$

Bei den Dualen ist Copossessivität über einem Intervall von [-2, -1, +1, +2] definiert:

$$(1.2) = P^1C^{+1}$$
 $(2.1) = P^2C^{-1}$

$$(1.3) = P^1C^{+2}$$
 $(3.1) = P^3C^{-2}$

$$(2.3) = P^2C^{+1}$$
 $(3.2) = P^3C^{-1}$



Ein Vergleich der Possessionszahlen mit den Relationalzahlen (vgl. Toth 2021) ergibt folgendes Bild:

Peirce-Zahlen	Possessionszahlen	Relationalzahlen
(1.1)	P1C0	R ¹ .R ⁻¹
(1.2)	P1C+1	R ¹ .R ⁻²
(1.3)	P1C+2	R ¹ .R ⁻³
(2.1)	P ² C ⁻¹	R ² .R ⁻¹
(2.2)	P^2C^0	R ² .R ⁻²
(2.3)	P ² C ⁺¹	R ² .R ⁻³
(3.1)	P ³ C ⁻²	R ³ .R ⁻¹
(3.2)	P3C-1	R ³ .R ⁻²
(3.3)	P ₃ C ₀	R ³ .R ⁻³

Hier stellen wir nun fest, daß P^n -Zahl = R^m -Zahl ist für n = m, daß aber für das Verhältnis von C-Zahlen und R-Zahlen gilt:

Erneut zeigt sich das Verhältnis von P/C-Zahlen und Relationalzahlen als asymmetrisch. Umso bemerkenswerter sind die beiden gleichen Abbildungen von C^{+1} und C^0 , die in der Tabelle eingerahmt wurden.

2. Possessive und negative Copossessivitätsbereiche

2.1. Neutraler C-Typus

Diese ontotopologische Struktur ist quasi das possessiv/copossessive "Nullelement".

(1.1) (2.2) (3.3)

 $R^{1}.R^{-1}$ $R^{2}.R^{-2}$ $R^{3}.R^{-3}$

P¹C⁰ P²C⁰ P³C⁰

P/C-Zahlen weisen damit, wie die Zeichen (und wie die elementare 3-wertige Logik, vgl. Günther 1980, S. 11 f.) 3 Identitäten auf (und haben damit Zugang zu einer Todesmetaphysik).

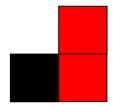
2.2. Positive C-Typen

2.2.1. C+1-Typen

(1.2) (2.3)

R1.R-2 R2.R-3

P¹C⁺¹ P²C⁺¹

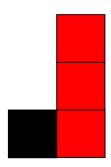


2.2.2. C+2-Typus

(1.3)

R₁.R₋₃

P1C+2



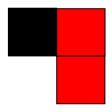
2.3. Negative C-Typen

2.3.1. C⁻¹-Typen

(2.1) (3.2)

R².R⁻¹ R³.R⁻²

P²C⁻¹ P³C⁻¹

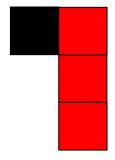


2.3.2. C⁻²-Typus

(3.1)

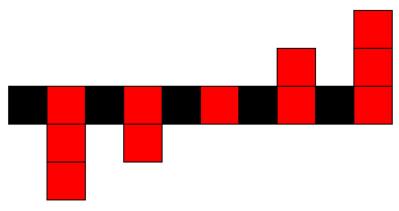
R³.R⁻¹

P³C⁻²



Wir können also die Copossessivitätsbereiche mittels der folgenden Achsensymmetrie darstellen:

Kommentiert [APDT1]:



Als Mittelachse fungiert dabei der S-U-Rand; d.h. auch der Rand zwischen den P/C-Zahlen ist, wie derjenige zwischen Zeichen und Objekt, entitätisch, insofern R(P, C) \neq R(C, P) \neq 0 gilt. Diese Niemandsländer kann man sehr schön anhand der ontotopologischen Darstellungen der Teilrelationen von P = (PP, PC, CP, CC, CC°) aufzeigen.

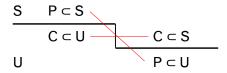
PP-Tableau

S

PC-Tableau

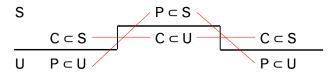


CP-Tableau

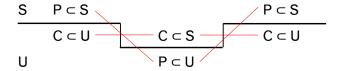


5

CC-Tableau



CC°-Tableaux



Konversion gilt also wohl für $PP = PP^{\circ}$, $PC^{\circ} = CP$ (bzw. $CP^{\circ} = PC$) und $CC^{\circ\circ} = CC$, aber nicht für die Scheidung von P- und C-Zahlen relativ zu dem zum S-U-Rand isomorphen P-C-Rand.

Literatur

Bense, Max, Semiotische Prozesse und Systeme. Baden-Baden 1975

Bense, Max, Axiomatik und Semiotik. Baden-Baden 1981

Günther, Gotthard, Beiträge zur Grundlegung einer operationsfähigen Dialektik. Bd. 3. Hamburg 1980

Toth, Alfred, Theorie der Relationalzahlen. Tucson, AZ 2021 (= Kybernetische Semiotik, Bd. 21)

12.1.2022